

Эффективное решение по перепрограммированию SFP/SFP+ Инструкция пользователя

> 000 HAF http://shop.nag.ru

Содержание

Описание и системные требования	3
Основные возможности	3
Минимальные системные требования	3
Запуск программы	4
Пользовательский интерфейс	5
Считывание данных из памяти оптического модуля	6
Запись данных в память (прошивка) оптического модуля	7
Краткое описание таблиц памяти оптического модуля	7

Описание и системные требования

SNR SFPWriter – это универсальный программно-аппаратный комплекс, разработанный для перепрограммирования оптических модулей форм-факторов SFP/SFP+.

SNR SFPWriter состоит из программатора «SNR SFPWriter-Prog» и программного обеспечения «SNR SFPWriter-Lic».

Программное обеспечение SFPWriter используется для работы с программным кодом (далее упоминается как «Прошивка»), включая все особенности MSA INF-8053 rev. 5.5, SFF-8472, SFF-8431, INF-8077i, INF-8438, которые позволяют использовать приемопередатчики различных форм-факторов в соответствии с общепринятыми стандартами.

Основные возможности

- Быстрая запись/чтение;
- Перепрограммирование EEPROM оптических модулей "SNR" SFP/SFP+;
- Перепрограммирование областей памяти A0h, A2h;
- Возможность редактирования основных параметров оптических трансиверов с пересчетом контрольной суммы.
- Ввод пароля для перепрограммирования модулей SFP/SFP+ сторонних производителей;
- Сохранение дампа памяти оптического модуля на ПК в виде файла;
- Отображение истории производимых операций;

Минимальные системные требования

- Операционная система Windows 7/8.1/10, а также Linux и Ubuntu;
- 1 Гб Оперативной памяти (RAM);
- 100 Мб, свободного места на жёстком диске.
- USB 2.0

Для корректной работы программатора необходимо скачать и установить драйвера FTDI (http://www.ftdichip.com/Drivers/VCP.htm)

Запуск программы

Для запуска программы необходимо открыть файл «**sfp-writer.exe**», расположенный в папке, в которую выполнена установка программы. Сразу после запуска откроется основное окно программы (Рис.2)

1.								SNR SFP	Writer v0.17							- 0 >
айл Н	Настройки	О программ	лe													
Euton	1														Выбор Таблицы Адрес:	: АО Нижняя • 0 7F
руфср	1 υγφερ 00	01	02	03	04	05	06	07	08	09	0A	OB	0C	0D	OE	OF
0h 00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0h 00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0h 00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0h 00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
10h 00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0h 00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0h 00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
70h 00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
															Контрольн	ая сумма: 0000
Зендор		A	ртикул:							Серийный ном	iep:					
Длина 9	SMF MMF(ON	M3) COPPER Д	лина волны, ни	1:						Скорость, Гби	ıт/с:					
ог:																Очистить л

Рис.2 – Основное окно программы

Пользовательский интерфейс

Пользовательский интерфейс программы состоит из трех основных блоков:

1. Верхний блок - функции и управление. Верхний блок функций и управления оснащен кнопками быстрого запуска:

Очистк	ка текущего буфера;	
	ка буфера из файла;	
📕 - Сохран	ение текущего буфера в файл;	
👚 - Чтение	е данных из памяти оптического модуля;	
📕 - Запись	анных в оптический модуль:	
Выбор Таблицы: АО	Нижняя	
Адрес: АО	Верхняя	
A2	Нижняя Верхняя Верхняя Верхняя	
1.1	- выоор таолицы памяти оптического мо	дуля.

2. Средний блок - данные, считанные из таблиц памяти модуля. (Рис. 3)

Блок содержит 3 вкладки «Буфер 1», «Буфер 2», «Буфер 3», в которых отображается информация, считанная из таблиц памяти оптического модуля.

00	01	02	03	04	05	06	07	08	09	0A	OB	0C	0D	OE	
h 03	04	01	00	10	02	10	00	00	00	00	03	02	00	14	96
h 00	00	00	00	53	4E	52	20	20	20	20	20	20	20	20	20
h 20	20	20	20	00	00	00	00	53	46	50	2D	31	35	35	4D
h 2D	31	33	31	30	20	20	20	31	2E	30	20	05	1E	00	8E
h 00	1A	00	00	50	47	37	34	34	30	30	32	35	31	20	20
h 20	20	20	20	31	34	30	35	32	36	20	20	00	00	00	7A
h 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
h 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Рис. 3 - Средний блок основного окна

3. Нижний блок – данные, считанные из памяти модуля и история проводимых операций (Рис. 4).

Вендор:	Артикул:	Серийный номер:
Длина SMF MMF(OM3)	СОРРЕК Длина волны, нм:	Скорость, Гбит/с:
Лог:		Очистить лог
Лицензия не активина		

Рис.4 – Нижний блок основного окна

Считывание данных из памяти оптического модуля

Для начала считывания данных из памяти оптического модуля необходимо:

- 1. Подключить программатор к USB-порту компьютера;
- 2. Запустить программу, ярлык «sfp-writer.exe».

После запуска программы необходимо вставить оптический модуль в разъем программатора.

Для определения текущих параметров модуля необходимо нажать кнопку 🔳 «Прочитать данные с SFP».

После считывания данных с модуля в среднем блоке заполнится вкладка «Буфер 1». (Рис. 5)

В данной вкладке будет представлена информация и контрольная сумма из таблицы, которую указали в верхнем блоке. (Рис. 6)

Буфер 1	Буфер 2	Буфер 3														
	00	01	02	03	04	05	06	07	08	09	0A	OB	0C	0D	OE	0F
0h 03	C	04	01	00	10	02	10	00	00	00	00	03	02	00	14	96
0h 00	C	00	00	00	53	4E	52	20	20	20	20	20	20	20	20	20
0h 20	2	20	20	20	00	00	00	00	53	46	50	2D	31	35	35	4D
0h 2D	3	31	33	31	30	20	20	20	31	2E	30	20	05	1E	00	8E
0h 00	1	IA	00	00	50	47	37	34	34	30	30	32	35	31	20	20
0h 20	2	20	20	20	31	34	30	35	32	36	20	20	00	00	00	7A
0h 00	C	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0h 00	C	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Контрольная сумма: 0D10

Выбор Таблицы:	АО Нижняя 🔻
Адрес:	АО Нижняя АО Верхняя
	А2 Верхняя

Рис.6 – Выбор таблицы

В нижнем блоке основного окна будут отображены текущие параметры модуля (Вендор, Артикул, Длина волны в нм и др.) (Рис. 7)

Вендор:	Артикул:
SNR	SFP-155M-1310
Длина SMF MMF(OM3) COPPER	Длина волны, нм:
20	1310
48] 34 30 30 32 35 31 20 20 50] 20 20 20 20 31 34 30 35 58] 32 36 20 20 00 00 07 A 60] 00 00 00 00 00 00 00 00 68] 00 00 00 00 00 00 00 00 70] 00 00 00 00 00 00 00 00 78] 00 00 00 00 00 00 00 00 Контрольная сумма: 0x0D10	

Запись данных в память (прошивка) оптического модуля

Для начала записи данных в память оптического модуля (прошивки) необходимо:

- 1. Подключить программатор к USB-порту компьютера;
- 2. Запустить программу, ярлык «sfp-writer.exe»;
- 3. После запуска программы необходимо вставить оптический модуль в разъем программатора;
- 4. Выбрать таблицу, в которую необходимо произвести запись данных (перепрошить);
- 5. Загрузить файл прошивки в программу, нажав кнопку 📝 и указав путь к файлу на ПК;
- 6. Для начала процесса записи нажать кнопку 🚩 «Записать данные в SFP»

После нажатия кнопки программа выведет информационное окно с процессом записи данных в память оптического модуля. (Рис. 8)

0	SNR SFPWriter	?	×
	Запись		

Рис. 8 - Окно процесса записи в память

После завершения процесса записи в нижнем блоке, в поле «**Лог**» будут выведены результаты записи данных в память модуля. (Рис. 9)

50	20 20 2	20 20	31 3	3 30	33
58	30 34 2	20 20	00 0	0 00	94
60	00 00 0	08 5A	44 E	E 43	383
68	50 CA	AB 08	58	50 F	0 C0
70 j	68 49 F	7 00	00 0	0 00	00 0
78	00 00 0	00 00	40 A	6 18	3 F 5
KOH	трольн	ная с	има	: 0x	1783
Дaı	ные ус	пешн	10 38	пис	аны

Рис. 9 - Результаты записи

Краткое описание таблиц памяти оптического модуля

В этой главе описывается содержание, которая может быть считана/записана при помощи программатора.

АО Нижняя - тип модуля, тип коннектора, максимальное расстояние, номинальная скорость, номинальная длина волны, серийный номер, производитель;

АО Верхняя - данная область памяти, выделена производителям, хранит данные определяемые вендором;

А2 Нижняя - в данной области памяти хранятся данные с порогами по показателям температуры, напряжения, мощности приемника, передатчика, параметры, для корректной работы DDMI;

А2 Верхняя - данная область памяти, выделена производителям, хранит данные определяемые вендором.